Conformal Surface Alignment with Optimal Möbius Search

نویسندگان

  • Huu Le
  • Tat-Jun Chin
  • David Suter
چکیده

Deformations of surfaces with the same intrinsic shape can often be described accurately by a conformal model. A major focus of computational conformal geometry is the estimation of the conformal mapping that aligns a given pair of object surfaces. The uniformization theorem enables this task to be acccomplished in a canonical 2D domain, wherein the surfaces can be aligned using a Möbius transformation. Current algorithms for estimating Möbius transformations, however, often cannot provide satisfactory alignment or are computationally too costly. This paper introduces a novel globally optimal algorithm for estimating Möbius transformations to align surfaces that are topological discs. Unlike previous methods, the proposed algorithm deterministically calculates the best transformation, without requiring good initializations. Further, our algorithm is also much faster than previous techniques in practice. We demonstrate the efficacy of our algorithm on data commonly used in computational conformal geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landmark constrained genus zero surface conformal mapping and its application to brain mapping research

In order to compare and integrate brain data more effectively, data from multiple subjects are typically mapped into a canonical space. One method to do this is to conformally map cortical surfaces to the sphere. It is well known that any genus zero Riemann surface can be mapped conformally to a sphere. Cortical surface is a genus zero surface. Therefore, conformal mapping offers a convenient m...

متن کامل

QCMC: Quasi-conformal Parameterizations for Multiply-connected domains

This paper presents a method to compute the quasi-conformal parameterization (QCMC) for a multiply-connected 2D domain or surface. QCMC computes a quasi-conformal map from a multiply-connected domain S onto a punctured disk DS associated with a given Beltrami differential. The Beltrami differential, which measures the conformality distortion, is a complexvalued function μ : S → C with supremum ...

متن کامل

Elliptic Equations in Conformal Geometry

A conformal transformation is a diffeomorphism which preserves angles; the differential at each point is the composition of a rotation and a dilation. In its original sense, conformal geometry is the study of those geometric properties preserved under transformations of this type. This subject is deeply intertwined with complex analysis for the simple reason that any holomorphic function f(z) o...

متن کامل

Surfaces from Circles

In the search for appropriate discretizations of surface theory it is crucial to preserve such fundamental properties of surfaces as their invariance with respect to transformation groups. We discuss discretizations based on Möbius invariant building blocks such as circles and spheres. Concrete problems considered in these lectures include the Willmore energy as well as conformal and curvature ...

متن کامل

Cortical Surface Flattening: a Quasi-conformal Approach Using Circle Packings

Comparing the location and size of functional brain activity across subjects is difficult due to individual differences in folding patterns and functional foci are often buried within cortical sulci. Cortical flat mapping is a tool which can address these problems by taking advantage of the two-dimensional sheet topology of the cortical surface. Flat mappings of the cortex assist in simplifying...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016